skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Slowik, Volker"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Embedded sensors within infrastructure elements are powerful catalysts for new designs and construction methods, enabling advanced data collection and informed decision making. This paper presents the development, validation, and implementation of a prototype instrumentation tool utilized in large-scale lateral load tests of rock-socketed pile foundations, with the objective to measure shear stresses near the rock-soil boundary. The proposed instrumentation is novel in that it will be the first attempt to determine experimentally the 3D strain field through embedded sensors with immediate application to a broad array of pile foundation engineering problems. Data obtained from the prototype instrumentation is used to clarify whether shear force amplifications in piles crossing soils with strong stiffness contrasts are real, or an artifact of analytical, Winkler-based design methodologies. Three reinforced concrete pile specimens with a diameter of 0.46 m and a length of 4.9 m were subjected to reverse cyclic lateral loading up to complete structural failure. The sensors’ development, design, and construction, as well as their performance in measuring shear stresses will be discussed by comparing experimental data with predictions from conventional software tools. Ultimately, this study aims to improve the design and construction of more practical, resilient, and economical infrastructure. 
    more » « less